Answer
$\sin\alpha=\frac{\sqrt3}{\sqrt5}$
$\sin\beta=\frac{\sqrt2}{\sqrt5}$
Work Step by Step
Using Pythagorean Theorem to find $c$.
$c=\sqrt {\sqrt2^{2}+\sqrt3^{2}}$
$c=\sqrt {2 + 3}$
$c=\sqrt {5}$
$\sin\alpha=\frac{opposite}{hypotenuse}=\frac{\sqrt3}{c}=\frac{\sqrt3}{\sqrt5}$
$\sin\beta=\frac{opposite}{hypotenuse}=\frac{\sqrt2}{c}=\frac{\sqrt2}{\sqrt5}$