Answer
sin α = $\frac{8}{17}$
sin β = $\frac{15}{17}$
Work Step by Step
In given right triangle, applying Pythagorean theorem-
$17^{2} = a^{2} + 15^{2}$
Therefore-
$a^{2} = 17^{2} - 15^{2}$ = 289 - 225 = 64
a = $\sqrt {64}$ = 8
sin α=$\frac{opposite}{hypotenuse}=\frac{a}{17}=\frac{8}{17}$
sin β=$\frac{opposite}{hypotenuse}=\frac{15}{17}$