Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 231: 4

Answer

$\;[\;cos(\frac{3\pi}{2}+2n\pi )+isin(\frac{3\pi}{2}+2n\pi )\;]\;=\;e^{i(\frac{3\pi}{2}+2n\pi) }\\\\$

Work Step by Step

remember; $R=|z|=\sqrt{a^2+b^2} \;\;\;\;\;\;and\;\;\;\;\;\;\;tan\Theta =\frac{a}{b}\\\\$ $R=|z|=\sqrt{(-1)^2}\;=\;\sqrt{1}=1\\\\$ $tan\Theta =\frac{-1}{0}\;=\;undefined\\\\$ $\Theta =\frac{3\pi}{2}\\\\$ $R(cos\Theta +isin\Theta )= Re^{i\Theta }\\\\$ $\Rightarrow 1\;[\;cos(\frac{3\pi}{2})+isin(\frac{3\pi}{2})\;]\;=1\;e^{i\frac{3\pi}{2}}\\\\$ Notice that because of periodicity it is the same number if we replace $\Theta$ with $\Theta +2n\pi$ for any integer $n$. $\;[\;cos(\frac{3\pi}{2}+2n\pi )+isin(\frac{3\pi}{2}+2n\pi )\;]\;=\;e^{i(\frac{3\pi}{2}+2n\pi) }\\\\$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.