Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 231: 3

Answer

$3\;[\;cos(\pi+2n\pi )+isin(\pi+2n\pi )\;]\;=3\;e^{i(\pi+2n\pi) }\\\\$

Work Step by Step

remember; $R=|z|=\sqrt{a^2+b^2} \;\;\;\;\;\;and\;\;\;\;\;\;\;tan\Theta =\frac{a}{b}\\\\$ $R=|z|=\sqrt{(-3)^2}\;=\;\sqrt{9}=3\\\\$ $tan\Theta =\frac{b}{a}\;=\;\frac{0}{-3}=0\\\\$ $\Theta =tan^{-1}(0) =\pi\\\\$ $R(cos\Theta +isin\Theta )= Re^{i\Theta }\\\\$ $\Rightarrow 3\;[\;cos(\pi)+isin(\pi)\;]\;=2\;e^{i\pi}\\\\$ Notice that because of periodicity it is the same number if we replace $\Theta$ with $\Theta +2n\pi$ for any integer $n$. $3\;[\;cos(\pi+2n\pi )+isin(\pi+2n\pi )\;]\;=3\;e^{i(\pi+2n\pi) }\\\\$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.