Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 231: 2

Answer

$2\;[\;cos(\frac{2\pi}{3}+2n\pi )+isin(\frac{2\pi}{3}+2n\pi )\;]\;=2\;e^{i(\frac{2\pi}{3}+2n\pi) }\\\\$

Work Step by Step

remember; $R=|z|=\sqrt{a^2+b^2} \;\;\;\;\;\;and\;\;\;\;\;\;\;tan\Theta =\frac{a}{b}\\\\$ $R=|z|=\sqrt{(-1)^2+(\sqrt{3})^2}\;=\;\sqrt{4}=2\\\\$ $tan\Theta =\frac{b}{a}\;=\;\frac{\sqrt{3}}{-1}=-\sqrt{3}\\\\$ $\Theta =tan^{-1}(-\sqrt{3}) =\frac{2\pi}{3} \\\\$ $R(cos\Theta +isin\Theta )= Re^{i\Theta }\\\\$ $\Rightarrow 2\;[\;cos(\frac{2\pi}{3})+isin(\frac{2\pi}{3})\;]\;=2\;e^{i\frac{2\pi}{3}}\\\\$ Notice that because of periodicity it is the same number if we replace $\Theta$ with $\Theta +2n\pi$ for any integer $n$. $2\;[\;cos(\frac{2\pi}{3}+2n\pi )+isin(\frac{2\pi}{3}+2n\pi )\;]\;=2\;e^{i(\frac{2\pi}{3}+2n\pi) }\\\\$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.