Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.6 Variation of Parameters - Problems - Page 189: 7

Answer

The general solution of $y{''}+4y'+4y = t^{-2}e^{-2t}$ is: $$y(t) = c_0e^{-2t}+c_2te^{-2t} -e^{-2t}\ln(t)$$

Work Step by Step

$$y{''}+4y'+4y = t^{-2}e^{-2t}$$ $$g(t) = t^{-2}e^{-2t}$$ To find the complementary function $y_c(t)$, consider the homogeneous part $$y{''}+4y'+4y=0$$ Corresponding characteristic equation is: $$m^2+4m+4=0$$ $$ m = -2, -2 $$ Hence, Complementary function is: $$y_c(t) = c_1e^{-2t}+c_2te^{-2t}$$ Hence Independent solutions $y_1(t)$ and $y_2(t)$ of homogeneous equation will be $$y_1(t) = e^{-2t} \text{ and } y_2(t) = te^{-2t}$$ Particular Solution $y_p(t)$ is given by: $$y_p(t) = u_1(t)y_1(t)+u_2(t)y_2(t)$$ where $$u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1,y_2)(t)}dt + c_3$$ $$u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1,y_2)(t)}dt+c_4$$ Since, $y_p(t)$ is a particular solution so we can choose $c_3=c_4=0$ such that both the constant term vanishes. $$W(y_1, y_2)(t) = \begin{vmatrix} e^{-2t} & te^{-2t} \\ -2e^{-2t} & -2te^{-2t}+e^{-2t} \end{vmatrix}=e^{-4t}$$ $$u_1(t) = -\int \frac{te^{-2t} \times t^{-2}e^{-2t}}{e^{-4t}}dt = -\int \frac{1}{t}dt$$ $$u_1(t) = -\ln(t)$$ $$u_2(t) = \int \frac{e^{-2t}\times t^{-2}e^{-2t}}{e^{-4t}}dt = \int \frac{1}{t^2}dt$$ $$u_2(t) = -\frac{1}{t}$$ $$\therefore y_p(t) = -\ln(t)e^{-2t}-\frac{1}{t}te^{-2t}$$ $$\therefore y_p(t) = -\ln(t)e^{-2t}-e^{-2t}$$ Therefore, the general solution is: $$y(t) = y_c(t)+y_p(t)$$ $$y(t) = c_1e^{-2t}+c_2te^{-2t} -\ln(t)e^{-2t}-e^{-2t}$$ $$y(t) = (c_1-1)e^{-2t}+c_2te^{-2t} -e^{-2t}\ln(t)$$ Say $c_0 = c_1-1$ $$y(t) = c_0e^{-2t}+c_2te^{-2t} -e^{-2t}\ln(t)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.