Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.6 Variation of Parameters - Problems - Page 189: 2

Answer

${y_{p}}=-\frac{2te^{-t}}{3}$

Work Step by Step

$$y''-y-2y=2e^-t$$ Consider the homogeneous LHS. Let $y=e^{\lambda{t}}$ so that $(lny)'=\lambda$. $$\therefore{\lambda}^2-\lambda-2=0$$ $$(\lambda+1)(\lambda-2)=0$$ $$\lambda_{1,2}=-1,2$$ $\therefore{y}=c_{1}e^{-t}+c_{2}e^{2t}$ is the general solution. Let $u(t)$ and $v(t)$ be the external functions associated with the solutions in the inhomogeneous case. $$\therefore{y}=u(t)e^{-t}+v(t)e^{2t},\quad{y'}=u'(t)e^{-t}+v'(t)e^{2t}-u(t)e^{-t}+2v(t)e^{2t}$$ To avoid over-complicating the inhomogeneous equation with variables, let us set up expression $y'$ in such a way that it would be most apparent that the homogeneous solutions $e^{-t}$ and $e^{2t}$ are twice differentiable. $$\therefore{u'(t)}e^{-t}+v'(t)e^{2t}=0(\Rightarrow\frac{v'(t)}{u'(t)}=-e^{-3t})$$ $$\therefore{y'}=-u(t)e^{-t}+2v(t)e^{2t}\Rightarrow{y''}=-u'(t)e^{-t}+2v'(t)e^{2t}+u(t)e^{-t}+4v(t)e^{2t}$$ Substituting this into the original equation, $$-u'(t)e^{-t}+2v'(t)e^{2t}+e^{-t}(u(t)+u(t)-2u(t))+e^{2t}(4v(t)-2v(t)-2v(t))=2e^{-t}$$ $$-u'(t)e^{-t}+2v'(t)e^{2t}=2e^{-t}$$ $$\therefore(\begin{matrix} e^{-t} & e^{2t}\\-e^{-t} & 2e^{2t}\end{matrix})(\begin{matrix}u'(t)\\v'(t)\end{matrix})=(\begin{matrix}0\\2e^{-t}\end{matrix})$$ $$(\begin{matrix}u'(t)\\v'(t)\end{matrix})=-\frac{1}{3e^{t}}(\begin{matrix} 2e^{2t} & -e^{2t}\\e^{-t} & e^{-t}\end{matrix})(\begin{matrix}0\\2e^{-t}\end{matrix})=(\begin{matrix}-\frac{2}{3}\\\frac{2}{3}e^{-3t}\end{matrix})$$ $$\therefore{u(t)}=-\int{\frac{2}{3}}dt=-\frac{2t}{3}+c_{1},\quad{v(t)}=\int{\frac{2e^{-3t}}{3}}dt=-\frac{2e^{-3t}}{9}+c_{2}$$ $$\therefore{y}=c_{1}e^{-t}+c_{2}e^{2t}-\frac{2te^{-t}}{3}-\frac{2e^{-t}}{9}=c_{1}e^{-t}+c_{2}e^{2t}-\frac{2e^{-t}}{3}(t-\frac{1}{3})\\ {\equiv}c_{1}e^{-t}+c_{2}e^{2t}-\frac{2te^{-t}}{3}\Rightarrow{y_{p}}=-\frac{2te^{-t}}{3}\quad(\because{t}\in\mathbb{R})$$ Substituting particular solution $y_{p}$ into the original equation, $$LHS:(\frac{4e^{-t}}{3}-\frac{2te^{-t}}{3}-(-\frac{2e^{-t}}{3}+\frac{2te^{-t}}{3})+\frac{4te^{-t}}{3}=2e^{-t}=RHS,\quad{t}\in\mathbb{R}$$ (Note #1: Following the typical procedure for the method of undetermined coefficients (i.e. substituting $y=ke^{-t}$ and comparing coefficients) here will cause the LHS=0. In such a case, follow the instructions of the question by plugging the particular solution into the equation first and observe how the coefficients interact.)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.