Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.6 Variation of Parameters - Problems - Page 189: 4

Answer

$y_{p}=2t^{2}e^{\frac{t}{2}}$

Work Step by Step

$$4y''-4y'+y=16e^{\frac{t}{2}}$$ Consider the homogeneous LHS. Let $y=e^{\lambda{t}}$ so that $(lny)'=\lambda$. $$\therefore(2\lambda-1)^2=0$$ $$\lambda=\frac{1}{2}$$ $\therefore{y}=(c_{1}+c_{2}t)e^{\frac{t}{2}}$ is the general solution. Let $u(t)$ be the function associated with the solution in the inhomogeneous case. $$\therefore{y}=u(t)e^{\frac{t}{2}},\quad{y'}=u'(t)e^{\frac{t}{2}}+\frac{1}{2}u(t)e^{\frac{t}{2}},\quad{y''}=u''(t)e^{\frac{t}{2}}+u'(t)e^{\frac{t}{2}}+\frac{1}{4}u(t)e^{\frac{t}{2}}$$ $$\therefore{4y''}-4y'+y=4u''e^{\frac{t}{2}}=16e^{\frac{t}{2}}$$ By association, $u''(t)=4$ $$\therefore{u(t)}=\int{\int{4}dt}dt=4(\frac{t^2}{2}+c_{1}t+c_{2})\equiv(c_{1}+c_{2}t)e^{\frac{t}{2}}+2t^{2}e^{\frac{t}{2}}\\ {\Rightarrow}y_{p}=2t^{2}e^{\frac{t}{2}}$$ Substituting particular solution $y_{p}$ into the original equation, $$LHS:4(4e^{\frac{t}{2}}+4te^{\frac{t}{2}}+\frac{t^{2}e^{\frac{t}{2}}}{2})-4(4te^{\frac{t}{2}}+t^{2}e^{\frac{t}{2}})+2t^{2}e^{\frac{t}{2}}=16e^{\frac{t}{2}}=RHS,\quad{t}\in\mathbb{R}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.