Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.6 Variation of Parameters - Problems - Page 189: 5

Answer

General Solution is $y(t) = c_1\sin(t)+c_2\cos(t) -\cos(t)\ln|\sec(t)+\tan(t)|$

Work Step by Step

$$y{''}+y = \tan{t}$$ $$g(t) = \tan(t)$$ To find the complementary function $y_c(t)$, consider the homogeneous part $$y''+y=0$$ Corresponding characteristic equation is: $$m^2+1=0$$ $$ m = \pm \iota $$ Hence, Complementary function is: $$y_c(t) = c_1\sin(t)+c_2\cos(t)$$ Hence Independent solutions $y_1(t)$ and $y_2(t)$ will be $$y_1(t) = \sin(t) \text{ and } y_2(t) = \cos(t)$$ Particular Solution $y_p(t)$ is given by: $$y_p(t) = u_1(t)y_1(t)+u_2(t)y_2(t)$$ where $$u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1,y_2)(t)}dt + c_3$$ $$u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1,y_2)(t)}dt+c_4$$ Since, $y_p(t)$ is a particular solution so we can choose $c_3=c_4=0$ such that both the constant terms vanishes. $$W(y_1, y_2)(t) = \begin{vmatrix} \sin(t) & \cos(t) \\ \cos(t) & -\sin(t) \end{vmatrix}=-1$$ $$u_1(t) = -\int \frac{\cos(t) \tan(t)}{-1}dt = -\cos(t)$$ $$u_2(t) = \int \frac{\sin(t)\tan(t)}{-1}dt = \int \frac{-\sin^2t}{\cos{t}}dt$$ $$u_2(t) = \int \frac{\cos^2t-1}{\cos(t)}dt$$ $$u_2(t) = \int (\cos(t) - \sec(t))dt$$ $$u_2(t) = \sin(t) - \ln|(\sec(t)+\tan(t))|$$ $$\therefore y_p(t) = -\cos(t)\sin(t)+[\sin(t)-\ln|\sec(t)+\tan(t)|]\cos(t)$$ $$\therefore y_p(t) = -\cos(t)\ln|\sec(t)+\tan(t)|$$ Therefore, the general solution is: $$y(t) = y_c(t)+y_p(t)$$ $$y(t) = c_1\sin(t)+c_2\cos(t) -\cos(t)\ln|\sec(t)+\tan(t)|$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.