Answer
Divergent
Work Step by Step
Consider $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} (1+\dfrac{1}{n})^n$
Now, take the integral test to find the convergence and divergence for the sequence.
We know that $\lim\limits_{n \to \infty} (1+\dfrac{x}{n})^n=e^x$ for all the values of $x$.
Now, $\lim\limits_{n \to \infty} (1+\dfrac{1}{n})^n=e^{1}=e \ne 0$
Hence, the given series is Divergent.