University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Practice Exercises - Page 553: 74

Answer

$2$

Work Step by Step

We know that the Taylor Series for $e^x$ and $\sin x$ is defined as: $e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+...$ and $ \sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-...$ Now, $\lim\limits_{\theta \to 0}\dfrac{e^{\theta }-e^{-\theta }-2\theta }{\theta -\sin \theta }=\lim\limits_{\theta \to 0}\dfrac{(1+\theta+\dfrac{(\theta)^2}{2!}+\dfrac{(\theta)^3}{3!}+...)-(1-\theta+\dfrac{(-\theta)^2}{2!}+\dfrac{(-\theta)^3}{3!}+...)-2(1+\theta+\dfrac{(\theta)^2}{2!}+\dfrac{(\theta)^3}{3!}+...)}{\theta -(\theta-\dfrac{(\theta)^3}{3!}+\dfrac{(\theta)^5}{5!}-..).}$ or, $=\lim\limits_{\theta \to 0}[\dfrac{2 (\theta)^3 (\dfrac{(\theta)^2}{3!}+\dfrac{(\theta)^4}{5!}-...)}{\theta^3(\dfrac{1}{3!}-\dfrac{(\theta)^2}{5!}+...)}]$ or, $\dfrac{2(\dfrac{1}{6}+0+...)}{(\dfrac{1}{6}-0+...)}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.