University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Practice Exercises - Page 553: 58

Answer

$\dfrac{1}{1+x^3}=\Sigma_{n=0}^\infty (-1)^n x^{3n}$ for $|x| \lt 1$

Work Step by Step

Since, we know that the Taylor Series for $\dfrac{1}{1-x}$ is defined as: $\dfrac{1}{1-x}=\Sigma_{n=0}^\infty x^n =1+x+x^2+....+x^n$ Replace $x=-x^3$ in the above form: $\dfrac{1}{1+x^3}=\dfrac{1}{1-(x^3)}=\Sigma_{n=0}^\infty (-x^3)^n =1+(-x^3)+(-x^3)^2+....+(-x^3)^n=\Sigma_{n=0}^\infty (-1)^n x^{3n} $ Here, $|-x^3| \lt 1 \implies |x| \lt 1$ Hence, $\dfrac{1}{1+x^3}=\Sigma_{n=0}^\infty (-1)^n x^{3n}$ for $|x| \lt 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.