University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Practice Exercises - Page 553: 57

Answer

$\dfrac{1}{1-2x}=\Sigma_{n=0}^\infty 2^n x^n $ for $|x| \lt \dfrac{1}{2} $

Work Step by Step

Since, we know that the Taylor Series for $\dfrac{1}{1-x}$ is defined as: $\dfrac{1}{1-x}=\Sigma_{n=0}^\infty x^n =1+x+x^2+....+x^n$ Replace $x=2x$ in the above form: $\dfrac{1}{1-2x}=\Sigma_{n=0}^\infty (2x)^n =1+(2x)+(2x)^2+....+(2x)^n$ or, $\dfrac{1}{1-2x}=\Sigma_{n=0}^\infty 2^n x^n $ Here, $|2x| \lt 1 \implies |x| \lt \dfrac{1}{2} $ Hence, $\dfrac{1}{1-2x}=\Sigma_{n=0}^\infty 2^n x^n $ for $|x| \lt \dfrac{1}{2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.