University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.2 - Vectors - Exercises - Page 609: 35

Answer

$\dfrac{3}{5\sqrt 2} i+\dfrac{4}{5\sqrt 2}j -\dfrac{1}{\sqrt 2 }k$ and $(\dfrac{1}{2},3,\dfrac{5}{2})$

Work Step by Step

Let us consider $P_1$ and $P_2$ as vectors and, a vector $u=P_2-P_1=\lt 2,5,0 \gt -\lt -1,1,5 \gt =\lt 3,4,-5 \gt$ or, $u=3 i+4j-5k$ and $|u|=\sqrt{(3)^2+(4)^2+(-5)^2}=\sqrt {50}=5 \sqrt 2$ The unit vector $\hat{\textbf{u}}$ can be calculated as: $\hat{\textbf{u}}=\dfrac{u}{|u|}$ Now, $\hat{\textbf{u}}=\dfrac{3 i+4j-5k}{5 \sqrt 2}=\dfrac{3}{5\sqrt 2} i+\dfrac{4}{5\sqrt 2}j -\dfrac{1}{\sqrt 2 }k$ The mid-point can be found as: $(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2},\dfrac{z_1+z_2}{2})$ Thus, $(\dfrac{2+(-1)}{2},\dfrac{5+1}{2},\dfrac{0+5}{2})=(\dfrac{1}{2},3,\dfrac{5}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.