Answer
$\dfrac{7}{13}(12i-5k)$
Work Step by Step
Here, $u=12i +0j-5k$
and $|u|=\sqrt{(12)^2+(0)^2+(-5)^2}=\sqrt {1}=\sqrt {169}=13$
The unit vector $\hat{\textbf{u}}$ can be calculated as: $\hat{\textbf{u}}=\dfrac{u}{|u|}$
Now, $\hat{\textbf{u}}=\dfrac{12i +0j-5k}{13}=(\dfrac{12}{13}i +0j -\dfrac{5}{13}k)$
Thus, $7\hat{\textbf{u}}=\dfrac{7}{13}(12i-5k)$