Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 422: 108

Answer

$\displaystyle \pi(\frac{4\pi}{3}-\tan\frac{\pi}{3})\approx 7.718$

Work Step by Step

Apply the washer method (rotation is about the y-axis) $V=\displaystyle \int_{c}^{d}\pi[(R(y))^{2}-(r(y))^{2}]dy$ $R(y)=2,\quad r(y)=\sec y.$ $V=\displaystyle \pi\int_{0}^{\pi/3}[2^{2}-\sec^{2}y]dy$ $=\pi[4y-\tan y]_{0}^{\pi/3}$ $=\displaystyle \pi(\frac{4\pi}{3}-\tan\frac{\pi}{3})\approx 7.718$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.