Answer
$\displaystyle \pi(\frac{4\pi}{3}-\tan\frac{\pi}{3})\approx 7.718$
Work Step by Step
Apply the washer method (rotation is about the y-axis)
$V=\displaystyle \int_{c}^{d}\pi[(R(y))^{2}-(r(y))^{2}]dy$
$R(y)=2,\quad r(y)=\sec y.$
$V=\displaystyle \pi\int_{0}^{\pi/3}[2^{2}-\sec^{2}y]dy$
$=\pi[4y-\tan y]_{0}^{\pi/3}$
$=\displaystyle \pi(\frac{4\pi}{3}-\tan\frac{\pi}{3})\approx 7.718$