Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 422: 107

Answer

$ a.\quad$ shown below $b.\quad\approx 6.71\ ft.$

Work Step by Step

$ a.\quad$ The angle $\theta_{1}$, under which you see the whole height, from the floor to the upper edge of the blackboard, is such that $\displaystyle \cot\theta_{1}=\frac{x}{15}$ The angle $\theta_{2}$, under which you see the height from the floor to the lower edge of the blackboard, is such that $\displaystyle \cot\theta_{2}=\frac{x}{3}$ The angle $\alpha$ is such that $\alpha=\theta_{1}-\theta_{2}$ $\displaystyle \alpha=\cot^{-1}\frac{x}{15}-\cot^{-1}\frac{x}{3}$ $ b.\quad$ $\displaystyle \alpha(x)=\cot^{-1}(\frac{x}{15})-\cot^{-1}(\frac{x}{3})$ $\displaystyle \frac{d\alpha}{dx}=-\frac{1}{1+(\frac{x}{15})^{2}}\cdot\frac{1}{15}-[-\frac{1}{1+(\frac{x}{3})^{2}}\cdot\frac{1}{3}$ $=-\displaystyle \frac{1}{15(1+\frac{x^{2}}{225})}+\frac{1}{3(1+\frac{x^{2}}{9})}$ $=-\displaystyle \frac{15}{225+x^{2}}+\frac{3}{9+x^{2}}$ $=\displaystyle \frac{-15(9+x^{2})+3(225+x^{2})}{(x^{2}+15)(x^{2}+3)}$ $=\displaystyle \frac{-135-12x^{2}+675+3x^{2}}{(x^{2}+225)(x^{2}+9)}$ $=\displaystyle \frac{-12x^{2}+540}{(x^{2}+225)(x^{2}+9)}$ $\displaystyle \frac{d\alpha}{dx}=0\quad$ when $12x^{2}-540=0$ $12x^{2}=540$ $x^{2}=45$ Discarding the negative solution, $x=3\sqrt{5}\approx 6.71\ ft.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.