Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 422: 104

Answer

$$ y = {\tan ^{ - 1}}x - x + 1$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{1}{{{x^2} + 1}} - 1,\,\,\,\,\,y\left( 0 \right) = 1 \cr & {\text{separating variables, we get:}} \cr & dy = \left( {\frac{1}{{{x^2} + 1}} - 1} \right)dx \cr & {\text{integrate both sides}} \cr & y = \int {\left( {\frac{1}{{{x^2} + 1}} - 1} \right)} dx \cr & y = {\tan ^{ - 1}}x - x + C\,\,\,\left( {\bf{1}} \right) \cr & \cr & {\text{use initial condition }}y\left( 0 \right) = 1 \cr & 1 = {\tan ^{ - 1}}0 - 0 + C \cr & C = 1 \cr & \cr & {\text{then}}{\text{, substitute }}C = 1{\text{ in }}\left( {\bf{1}} \right) \cr & y = {\tan ^{ - 1}}x - x + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.