Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 422: 103

Answer

$$ y = {\sin ^{ - 1}}x $$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {1 - {x^2}} }},\,\,\,\,\,y\left( 0 \right) = 0 \cr & {\text{separating variables}} \cr & dy = \frac{1}{{\sqrt {1 - {x^2}} }}dx \cr & {\text{integrate both sides}} \cr & y = \int {\frac{1}{{\sqrt {1 - {x^2}} }}} dx \cr & y = {\sin ^{ - 1}}x + C\,\,\,\left( {\bf{1}} \right) \cr & \cr & {\text{use initial condition }}y\left( 0 \right) = 0 \cr & 0 = {\sin ^{ - 1}}0 + C \cr & C = 0 \cr & \cr & {\text{then}}{\text{, substitute }}C = 0{\text{ in }}\left( {\bf{1}} \right) \cr & y = {\sin ^{ - 1}}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.