Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 420: 8

Answer

$a.\displaystyle \quad \frac{3\pi}{4}$ $b.\displaystyle \quad \frac{\pi}{6}$ $c.\displaystyle \quad \frac{2\pi}{3}$

Work Step by Step

$y=\cot^{-1}x$ is the number in $(0, \pi)$ for which $\cot y=x.$ Use reference angles in quadrant I, with $\cot(\pi-t)=-\cot t$ $(a)$ In Q I, $\displaystyle \cot(\frac{\pi}{4})=1$, so $\displaystyle \cot(\pi-\frac{\pi}{4})=-1 \quad\Rightarrow\quad \cot^{-1}(-1)=\frac{3\pi}{4}$ $(b)$ In Q I, $\displaystyle \cot(\frac{\pi}{6})=\sqrt{3}$, so$ \displaystyle \quad \cot^{-1}(\sqrt{3})=\frac{\pi}{6}$ $(c)$ In Q I, $\displaystyle \cot(\frac{\pi}{3})=\frac{1}{\sqrt{3}}$, so $\displaystyle \cot(\pi-\frac{\pi}{3})=-\frac{1}{\sqrt{3}} \quad\Rightarrow\quad \cot^{-1}(-\frac{1}{\sqrt{3}})=\frac{2\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.