Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 420: 5

Answer

$a.\displaystyle \quad \frac{\pi}{3}$ $b.\displaystyle \quad \frac{3\pi}{4}$ $c.\displaystyle \quad \frac{\pi}{6}$

Work Step by Step

$y=\cos^{-1}x$ is the number in $[0, \pi]$ for which $\cos y=x.$ Use reference angles in the 1st quadrant, keeping in mind that $\cos(\pi-t)=-\cos t$ $\left\{\begin{array}{llll} \cos\frac{\pi}{3}=\frac{1}{2} & \Rightarrow & & \Rightarrow\cos^{-1}(\frac{1}{2})=\dfrac{\pi}{3}\\ & & & \\ \cos\frac{\pi}{4}=\frac{1}{\sqrt{2}} & \Rightarrow & \cos(-\frac{\pi}{4})=-\frac{1}{\sqrt{2}} & \Rightarrow\cos^{-1}(-\frac{1}{\sqrt{2}})=\pi-\frac{\pi}{4}=\dfrac{3\pi}{4}\\ & & & \\ \cos\frac{\pi}{6}=\frac{ \sqrt{3}}{2} & \Rightarrow & & \Rightarrow\cos^{-1}(\frac{\sqrt{3}}{2})=\dfrac{\pi}{6} \end{array}\right.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.