Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 420: 7

Answer

$a.\displaystyle \quad \frac{3\pi}{4}$ $b.\displaystyle \quad \frac{\pi}{6}$ $c.\displaystyle \quad \frac{2\pi}{3}$

Work Step by Step

$y=\sec^{-1}x$ is the number in $[0, \pi/2$) $\cup(\pi/2, \pi$] for which $\sec y=x.$ $(\displaystyle \sec y=x \Leftrightarrow \cos y=\frac{1}{x})$ Use reference angles in the 1st quadrant, keeping in mind that $\cos(\pi-t)=-\cos t$ $(\mathrm{a})$ $\displaystyle \cos\frac{\pi}{4}=\frac{1}{\sqrt{2}}\quad\Rightarrow\quad\cos(\pi-\frac{\pi}{4})=-\frac{1}{\sqrt{2}}\qquad \Rightarrow\quad\sec(\frac{3\pi}{4})=-\sqrt{2}$ $\displaystyle \Rightarrow\quad\sec^{-1}(-\sqrt{2})=\frac{3\pi}{4}$ $(b)$ $\displaystyle \cos\frac{\pi}{6}=\frac{ \sqrt{3}}{2}\quad\Rightarrow\quad \sec(\frac{\pi}{6})=\frac{2}{\sqrt{3}}\quad\Rightarrow\quad\sec^{-1}(\frac{2}{\sqrt{3}})=\frac{\pi}{6}$ $(c)$ $\displaystyle \cos\frac{\pi}{3}=\frac{1}{2}\quad\Rightarrow\quad \cos(\pi-\frac{\pi}{3})=\frac{1}{2}\quad\Rightarrow\quad\sec(\frac{2\pi}{3})=2$ $\displaystyle \Rightarrow\quad\sec(2)=\frac{2\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.