Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 409: 53

Answer

$1$

Work Step by Step

Here, we have $\ln f(x)=\frac{1}{x}\ln (\ln x)$ and $f(x)=e^{( \frac{\ln(\ln x)}{x})}$ Now, $e^{\lim\limits_{x \to \infty} ( \frac{\ln(\ln x)}{x})}=\dfrac{\infty}{\infty}$ This shows an indeterminate form of limit, thus we will apply L-Hospital's rule such as: $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$ $e^{\lim\limits_{x \to \infty} ( \frac{1/x \ln x}{1})}=e^{( \frac{1}{\infty})}$ or, $e^{0}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.