Answer
$\ln 2$
Work Step by Step
Here, we have $\lim\limits_{x \to \infty} f(\infty)=\lim\limits_{x \to \infty} \ln (\dfrac{2x}{x+1})=\dfrac{\infty}{\infty}$
This shows an indeterminate form of limit, thus we will apply L-Hospital's rule such as:
$\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$
Now, $p'(x)=2$ and $q'(x)=1$
$ \lim\limits_{x \to \infty} \ln [\dfrac{2}{1}]=\ln 2$