Answer
$5$
Work Step by Step
Consider: $\lim\limits_{x \to 0}f(x)=\lim\limits_{x \to 0}\dfrac{\sin 5x}{x}$
Need to check that the limit has an indeterminate form.
Thus, $f(0)=\dfrac{\sin 0}{0}=\dfrac{0}{0}$
Now, apply L-Hospital's rule such as: $\lim\limits_{a \to b}f(x)=\lim\limits_{a \to b}\dfrac{g'(x)}{h'(x)}$
This implies:
$\lim\limits_{x \to 0}\dfrac{5 \cos 5x}{1}=\dfrac{5 \cos 0}{1}=5$