Answer
$\dfrac{ 8\pi}{3}$
Work Step by Step
We need to use the shell model as follows:
$V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$
$ \implies V= \int_{0}^{2} (2 \pi) \cdot y (y-\dfrac{y}{2}) dy$
Now, $V= 2\pi \times [\dfrac{y^3}{6}]_{0}^{2}$
or, $=2 \pi (\dfrac{8}{6})$
or, $=\dfrac{ 8\pi}{3}$