Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.2 - Volumes Using Cylindrical Shels - Exercises 6.2 - Page 330: 15

Answer

$\dfrac{16 \pi (3\sqrt 2+5)}{15})$

Work Step by Step

We need to use the shell model as follows: $V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$ $ \implies V= \int_{0}^{2} (2 \pi) \cdot y (\sqrt y-(-y)) dy$ Now, $V=2 \pi (\dfrac{2y^2}{5}\sqrt y+\dfrac{y^2}{3})_{0}^{2}$ or, $=16 \pi \times (\dfrac{3\sqrt 2+5}{15})$ or, $=\dfrac{16 \pi (3\sqrt 2+5)}{15})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.