Answer
$\dfrac{ 4\pi}{3}$
Work Step by Step
We need to use the shell model as follows:
$V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$
$ \implies V= \int_{0}^{1} (2 \pi) \cdot y (y-(-y)) dy$
Now, $V=[\dfrac{4 \pi y^3}{3}]_{0}^{1}$
or, $=\dfrac{ 4\pi}{3}$