Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.2 - Volumes Using Cylindrical Shels - Exercises 6.2 - Page 330: 14

Answer

a) $\tan^2 x; 0 \leq x \leq \pi/4$ b) $\dfrac{4 \pi-\pi^2}{2} $

Work Step by Step

a) $ x g(x) =x (\dfrac{\tan^2 x}{x})=\tan^2 x; 0 \leq x \leq \pi/4$ b) We need to use the shell model as follows: $V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$ $ \implies V= \int_{0}^{\pi/4} (2 \pi) \cdot x (\dfrac{\tan^2 x}{x}) dx$ Now, $V=2 \pi (\tan x-x)_{0}^{\pi/4}$ or, $=2 \pi \times (\dfrac{4 -\pi}{4})$ or, $=\dfrac{4 \pi-\pi^2}{2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.