Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 286: 24

Answer

$$ - \frac{{137}}{{20}}$$

Work Step by Step

$$\eqalign{ & \int_1^8 {\frac{{\left( {{x^{1/3}} + 1} \right)\left( {2 - {x^{2/3}}} \right)}}{{{x^{1/3}}}}} dx \cr & {\text{use distributive property}} \cr & \int_1^8 {\frac{{2{x^{1/3}} - x + 2 - {x^{2/3}}}}{{{x^{1/3}}}}} dx \cr & \int_1^8 {\left( {2 - {x^{2/3}} + 2{x^{ - 1/3}} - {x^{1/3}}} \right)} dx \cr & {\text{integrate by using }}\int_a^b {{x^n}} dx = \left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)_a^b \cr & = \left( {2x - \frac{{3{x^{5/3}}}}{5} + 3{x^{2/3}} - \frac{3}{4}{x^{4/3}}} \right)_1^8 \cr & {\text{Evaluating, we get:}} \cr & = \left( {2\left( 8 \right) - \frac{{3{{\left( 8 \right)}^{5/3}}}}{5} + 3{{\left( 8 \right)}^{2/3}} - \frac{3}{4}{{\left( 8 \right)}^{4/3}}} \right) - \left( {2\left( 1 \right) - \frac{{3{{\left( 1 \right)}^{5/3}}}}{5} + 3{{\left( 1 \right)}^{2/3}} - \frac{3}{4}{{\left( 1 \right)}^{4/3}}} \right) \cr & = - \frac{{16}}{5} - \frac{{73}}{{20}} \cr & = - \frac{{137}}{{20}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.