Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 286: 18

Answer

$$4\sqrt 3 - 3$$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /3}^{ - \pi /4} {\left( {4{{\sec }^2}t + \frac{\pi }{{{t^2}}}} \right)} dt \cr & {\text{Separate}} \cr & = \int_{ - \pi /3}^{ - \pi /4} {\left( {4{{\sec }^2}t} \right)} dt + \int_{ - \pi /3}^{ - \pi /4} {\left( {\pi {t^{ - 2}}} \right)} dt \cr & {\text{Integrate}} \cr & = \left( {4\tan t} \right)_{ - \pi /3}^{ - \pi /4} + \left( {\frac{{\pi {t^{ - 1}}}}{{ - 1}}} \right)_{ - \pi /3}^{ - \pi /4} \cr & = \left( {4\tan t - \frac{\pi }{t}} \right)_{ - \pi /3}^{ - \pi /4} \cr & {\text{Evaluating, we get:}} \cr & = \left( {4\tan \left( { - \frac{\pi }{4}} \right) - \frac{\pi }{{\left( { - \pi /4} \right)}}} \right) - \left( {4\tan \left( { - \frac{\pi }{3}} \right) - \frac{\pi }{{\left( { - \pi /3} \right)}}} \right) \cr & = \left( { - 4 + 4} \right) - \left( { - 4\sqrt 3 + 3} \right) \cr & = 4\sqrt 3 - 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.