Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.2 - Sigma Notation and Limits of Finite Sums - Exercises 5.2 - Page 266: 46

Answer

$\dfrac{7}{12}$

Work Step by Step

Consider $f(x)=x^2-x^3$ Then, $\Sigma_{i=1}^n (\dfrac{1}{n}) (k_i^2-k_i^3)=(\dfrac{1}{n}) \Sigma_{i=1}^n [-(-1+\dfrac{i}{n})^3]$ This implies that $(\dfrac{1}{n})\Sigma_{i=1}^n 2-(\dfrac{5}{n^2})\Sigma_{i=1}^n i+(\dfrac{4}{n^3})\Sigma_{i=1}^n i^2-(\dfrac{1}{n^4})\Sigma_{i=1}^n i^3=2-[\dfrac{5n+5}{2n}]+[\dfrac{4n^2+6n+2}{3n^2}]-[\dfrac{n^2+2n+1}{4n^2}]$ Now, $\lim\limits_{n \to \infty}[2-\dfrac{5+5/n}{2}+\dfrac{4+6/n+2/n^2}{3n^2}-\dfrac{1+2/n+1/n^2}{4}]=\dfrac{7}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.