Answer
$\dfrac{1}{2}$
Work Step by Step
Consider $f(x)=2x^3$
Here, we have $\Sigma_{i=1}^n (\dfrac{2}{n}) (k_i^3)=(\dfrac{2}{n}) \Sigma_{i=1}^n (\dfrac{i^3}{n^3}$
This implies that
$(\dfrac{2}{n^4})\Sigma_{i=1}^n i^3=\dfrac{n^2+2n+1}{2n^2}$
Now, $\lim\limits_{n \to \infty}\dfrac{1+2/n+1/n^2}{2}=\dfrac{1}{2}$