Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.2 - Sigma Notation and Limits of Finite Sums - Exercises 5.2 - Page 266: 44

Answer

$\dfrac{13}{6}$

Work Step by Step

Consider $f(x)=3x+2x^2$ This implies that $\Sigma_{i=1}^n (\dfrac{1}{n}) (3k_i+2k_i^2)=(\dfrac{1}{n}) \Sigma_{i=1}^n (\dfrac{3i}{n}+\dfrac{2i^2}{n^2})$ $(\dfrac{3}{n^2})\Sigma_{i=1}^n i+(\dfrac{2}{n^3})\Sigma_{i=1}^n i^2=\dfrac{(3n^2+3n)}{2n^2}+\dfrac{(2n^2+3n+1)}{3n^2}$ Now, $\lim\limits_{n \to \infty}[\dfrac{3+3/n}{2}+\dfrac{2+3/n+1/n^2}{3}]=\dfrac{3}{2}+\dfrac{2}{3}$ or, $\dfrac{9+4}{6}=\dfrac{13}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.