Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 307: 9

Answer

a. $4$ b. $2$ c. $-2$ d. $-2\pi$, e. $\frac{8}{5}$

Work Step by Step

Given $\int_{-2}^23f(x)dx=3\int_{-2}^2f(x)dx=12$, $\int_{-2}^5f(x)dx=6$, and $\int_{-2}^5g(x)dx=2$, we have a. $\int_{-2}^2f(x)dx=12/3=4$ b. $\int_{2}^5f(x)dx=\int_{-2}^5f(x)dx-\int_{-2}^2f(x)dx=6-4=2$ c. $\int_{5}^{-2}g(x)dx=-\int_{-2}^5g(x)dx=-2$ d. $\int_{-2}^5(-\pi g(x))dx=-\pi\int_{-2}^5 g(x)dx=-2\pi$, e. $\int_{-2}^5(\frac{f(x)+g(x)}{5})dx=\int_{-2}^5(\frac{f(x)}{5})dx+\int_{-2}^5(\frac{g(x)}{5})dx=\frac{1}{5}\int_{-2}^5f(x)dx+\frac{1}{5}\int_{-2}^5g(x)dx=\frac{6}{5}+\frac{2}{5}=\frac{8}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.