Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 307: 10

Answer

a. $1$ b. $-1$ c. $-\pi$ d. $\sqrt 2\pi$ e. $1-3\pi$

Work Step by Step

Given $\int_{0}^2f(x)dx=\pi$, $\int_{0}^27g(x)dx=7$, and $\int_{0}^1g(x)dx=2$, we have a. $\int_{0}^2g(x)dx=7/7=1$ b. $\int_{1}^2g(x)dx=$\int_{0}^2g(x)dx+$\int_{0}^1g(x)dx=1-2=-1$ c. $\int_{2}^0f(x)dx=-\int_{0}^2f(x)dx=-\pi$ d. $\int_{0}^2\sqrt 2f(x)dx=\sqrt 2\int_{0}^2f(x)dx=\sqrt 2\pi$ e. $\int_{0}^2(g(x)-3f(x))dx=\int_{0}^2g(x)dx-3\int_{0}^2f(x)dx=1-3\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.