Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 307: 11

Answer

$\frac{8}{3}$

Work Step by Step

Step 1. Graph the function for the given interval of $0\leq x\leq 3$ and identify a zero at $x=1$. Step 2. The total area is the sum of the absolute value of the two separate areas $A_1$ and $A_2$. Step 3. Evaluate $A_1=\int_0^1(x^2-4x+3)dx=(\frac{1}{3}x^3-2x^2+3x)|_0^1=\frac{1}{3}(1)^3-2(1)^2+3(1)-0=\frac{4}{3}$ Step 4. Evaluate $A_2=\int_1^3(x^2-4x+3)dx=(\frac{1}{3}x^3-2x^2+3x)|_1^3=\frac{1}{3}(3)^3-2(3)^2+3(3)-(\frac{1}{3}(1)^3-2(1)^2+3(1))=0-\frac{4}{3}=-\frac{4}{3}$ Step 5. Thus, we have the area as $A=|A_1|+|A_2|=\frac{8}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.