Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 163: 27

Answer

(a) $11.2cm/min$ (b) $14.9cm/min$

Work Step by Step

Identify the given quantities: $\frac{dV}{dt}=10m^3/min$, $\frac{h}{d}=\frac{3}{8}$, , $h=4m$. Thus the base radius $r=d/2=\frac{8(4)}{2(3)}=\frac{16}{3}$, $r=4h/3$ (a) $V=\pi r^2h/3=16\pi h^3/27$, differentiate $\frac{dV}{dt}=\frac{16}{9}\pi h^2\frac{dh}{dt}=\frac{16}{9}\pi 4^2\frac{dh}{dt}=\frac{256}{9}\pi \frac{dh}{dt}$. As $\frac{dV}{dt}=10m^3/min$, we have $\frac{dh}{dt}\approx0.112m/min=11.2cm/min$ (b) With $r=4h/3$, we have $\frac{dr}{dt}=\frac{4}{3}\frac{dh}{dt}=14.9cm/min$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.