Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.3 Differentiation Rules - Exercises 3.3 - Page 126: 63

Answer

See explanations.

Work Step by Step

a. Step 1. Recall the Derivative Product Rule: $\frac{d}{dx}(uz)=u\frac{dz}{dx}+z\frac{du}{dx}$ Step 2. Let $z=vw$, we have $\frac{d}{dx}(z)=\frac{d}{dx}(vw)=v\frac{dw}{dx}+w\frac{dv}{dx}$ Step 3. Combine the above results: $\frac{d}{dx}(uz)=\frac{d}{dx}(uvw)=u(v\frac{dw}{dx}+w\frac{dv}{dx})+vw\frac{du}{dx}$ Step 4. Rewrite the above results: $\frac{d}{dx}(uvw)=uv\frac{dw}{dx}+uw\frac{dv}{dx}+vw\frac{du}{dx}$ b. Repeat the above process: $\frac{d}{dx}(u_1u_2u_3u_4)=u_1u_2u_3\frac{du_4}{dx}+u_1u_2u_4\frac{du_3}{dx}+u_1u_3u_4\frac{du_2}{dx}+u_2u_3u_4\frac{du_1}{dx}$ c. The above results can be generalized to $n$ products: $\frac{d}{dx}(u_1u_2u_3...u_n)=u_2u_2u_3...u_n\frac{du_1}{dx}+u_1u_3...u_n\frac{du_2}{dx}+u_1u_2...u_n\frac{du_23}{dx}+...+u_1u_2...u_{n-1}\frac{du_n}{dx}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.