Answer
$\frac{du}{dx}=\frac{-3}{x^4}$
$\frac{d^2u}{dx^2}=\frac{12}{x^5}$
Work Step by Step
$ u=\frac{(x^2+x)x^2-x+1}{x^4}$
=$\frac{x(x+1)(x^2-x+1)}{x64}$
=$\frac{x(x^3+1)}{x^4}$
=$\frac{x^4+x}{x^4}$
=$1+\frac{x}{x^4}
=1+x^{-3}$
=>$\frac{du}{dx}=0-3x^{-4}=-3x^{-4}=\frac{-3}{x^4}$
$\frac{d^2u}{dx^2}=12x^{-5}=\frac{12}{x^5}$