Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 883: 76

Answer

$6 \ln 2$

Work Step by Step

Integrating the inside $dy$ integral, we get: $I= \int_{2}^{\infty} [ \dfrac{3 (y-1)^{1/3} dx}{x^2-x}]_0^2 $ or, $= \int_{2}^{\infty} \dfrac{6}{x^2-x} dx $ or, $= 6 \int_{2}^{\infty} [\dfrac{1}{x-1} -\dfrac{1}{x}]dx $ or, $= 6 \lim\limits_{b \to \infty } \int_{2}^{b} [\dfrac{1}{x-1} -\dfrac{1}{x}]dx $ or, $= 6 \lim\limits_{b \to \infty } \ln (b-1) -\ln b -\ln 1+\ln 2$ Thus, we have $I=6 \lim\limits_{b \to \infty } \ln (1-\dfrac{1}{b})+\ln (2)=6 \ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.