Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 883: 57

Answer

$\frac{4}{3}$

Work Step by Step

$y = x , y + x = 2$ $x= 0$ $y = x ......1$ $y+x = 2$ $y=2-x .....2$ Compare 1 and 2 $x=2-x$ $x=1$ $x=1,x=0$ $y=2-x,y=x$ $V = \int\limits_{0}^{1} \int\limits_{x}^{2-x}(x^2 +y^2) dydx$ $V = \int\limits_{0}^{1} \left(2x^2 -\frac{7x^3}{3} + \frac{(2-x)^3}{3}\right) dx$ $V=\frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.