Answer
$\pi^2$
Work Step by Step
Consider $I= \int_{-\infty}^{\infty} \dfrac{dx}{x^2+1} \int_{-\infty}^{\infty} \dfrac{dy}{y^2+1}$
or, $=[ \arctan x]_{-\infty}^{\infty} [ \arctan y]_{-\infty}^{\infty}$
or, $=[\arctan x (-\infty) -\arctan x (\infty)] [\arctan y (-\infty) -\arctan y (\infty)] $
Thus, we have $I=\pi \cdot \pi =\pi^2$