Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Practice Exercises - Page 864: 33

Answer

$-1.55$

Work Step by Step

$x=cos(t)=cos1$ when $t=1$ $\frac{dx}{dt}=-sin(t)=-sin1$ when $t=1$ $y=sin(t)=sin1$ when $t=1$ $\frac{dy}{dt}=cos(t)=cos1$ when $t=1$ $z=cos(2t)=cos2$ when $t=1$ $\frac{dz}{dt}=-sin(2t)=-sin2$ when $t=1$ $f(x,y,z)=xy+yz+xz$ $f_{x}=y+z=sin1+cos2$ when $t=1$ $f_{y}=x+z=cos1+cos2$ when $t=1$ $f_{z}=x+y=cos1+sin1$ when $t=1$ $\frac{df}{dt}=f_{x}\frac{dx}{dt}+f_{y}\frac{dy}{dt}+f_{z}\frac{dz}{dt}$ $=(sin1+cos2)(-sin1)+(cos1+cos2)(cos1)+(cos1+sin1)(-sin2)=-1.55$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.