Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 103: 22a

Answer

$E=0.16S+0.2$

Work Step by Step

The regression line is: $y=mx+b$, where $m$ and $b$ are computed as follows. $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n},$ $n=$ number of data points. $\left[\begin{array}{lllll} & S & E & SE & S^{2}\\ & & & & \\ \hline & 10 & 2 & 20 & 100\\ & 15 & 2.5 & 37.5 & 225\\ & 20 & 3 & 60 & 400\\ & 25 & 4.5 & 112.5 & 625\\ \hline & & & & \\ \sum & 70 & 12 & 230 & 1350\\ & & & & \end{array}\right]$ $m=\displaystyle \frac{4(230)-(70)(12)}{4(1350)-(70)^{2}} =0.16$ $b=\displaystyle \frac{12-0.16(70)}{4}=0.2$ $E=0.16S+0.2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.