Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 103: 20

Answer

$y=25.4p-118$ When recovery level is $ 70\%$, the economic value is $ {{\$}} 1660$ billion.

Work Step by Step

The regression line is $\qquad y=mx+b$, where $m$ and $b$ are computed as follows. $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n},$ $n=$ number of data points. $\left[\begin{array}{lllll} & p & y & py & p^{2}\\ & & & & \\ \hline & 10 & 200 & 2000 & 100\\ & 40 & 900 & 36,000 & 1600\\ & 50 & 1000 & 50,000 & 2500\\ & 80 & 2000 & 160,000 & 6400\\ \hline & & & & \\ \sum & 180 & 4100 & 248,000 & 10,600\\ & & & & \end{array}\right]$ $m=\displaystyle \frac{4(248,000)-(180)(4100)}{4(10,600)-(180)^{2}}=\frac{127}{5}=25.4$ $b=\displaystyle \frac{4100-(25.4)(180)}{4}=-118$ $y=25.4p-118$ When $p=70$ (percent), $y=25.4(70)-118=1660$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.