Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 192: 48

Answer

\[ = 6\sin \,\left( {{e^{3x + 1}}} \right) \cdot \cos \,\left( {{e^{3x + 1}}} \right) \cdot \,{e^{3x + 1}}\]

Work Step by Step

\[\begin{gathered} y = {\sin ^2}\,\left( {{e^{3x + 1}}} \right) \hfill \\ \hfill \\ Chain\,\,rule \hfill \\ \hfill \\ f\,{\left( {g\,\left( t \right)} \right)^,} = {f^,}\,\left( {g\,\left( t \right)} \right) \cdot {g^,}\,\left( t \right) \hfill \\ \hfill \\ therefore \hfill \\ \hfill \\ {y^,} = 2\sin \,\left( {{e^{3x + 1}}} \right) \cdot \,{\left( {\sin \,\left( {{e^{3x + 1}}} \right)} \right)^,} \hfill \\ \hfill \\ use\,\,\frac{d}{{dx}}\left[ {\sin u} \right] = u'\cos u \hfill \\ \hfill \\ y' = 2\sin \,\left( {{e^{3x + 1}}} \right) \cdot \cos \,\left( {{e^{3x + 1}}} \right) \cdot \,{\left( {{e^{3x + 1}}} \right)^,} \hfill \\ \hfill \\ simplify \hfill \\ \hfill \\ y' = 2\sin \,\left( {{e^{3x + 1}}} \right) \cdot \cos \,\left( {{e^{3x + 1}}} \right) \cdot \,{e^{3x + 1}} \cdot \,{\left( {3x + 1} \right)^,} \hfill \\ \hfill \\ y' = 2\sin \,\left( {{e^{3x + 1}}} \right) \cdot \cos \,\left( {{e^{3x + 1}}} \right) \cdot \,{e^{3x + 1}} \cdot \,3 \hfill \\ \hfill \\ = 6\sin \,\left( {{e^{3x + 1}}} \right) \cdot \cos \,\left( {{e^{3x + 1}}} \right) \cdot \,{e^{3x + 1}} \hfill \\ \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.