Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 192: 45

Answer

$$\frac{{dy}}{{dx}} = - \frac{{{{\cot }^2}x{{\csc }^2}x}}{{\sqrt {1 + {{\cot }^2}x} }}$$

Work Step by Step

$$\eqalign{ & y = \sqrt {1 + {{\cot }^2}x} \cr & {\text{Write as}} \cr & y = {\left( {1 + {{\cot }^2}x} \right)^{1/2}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {1 + {{\cot }^2}x} \right)}^{1/2}}} \right] \cr & {\text{Use the chain rule}}{\text{,}} \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {1 + {{\cot }^2}x} \right)^{1/2 - 1}}\frac{d}{{dx}}\left[ {1 + {{\cot }^2}x} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {1 + {{\cot }^2}x} \right)^{ - 1/2}}\left( {2\cot x} \right)\frac{d}{{dx}}\left[ {\cot x} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{{{{\left( {1 + {{\cot }^2}x} \right)}^{1/2}}}}\left( {\cot x} \right)\left( { - {{\csc }^2}x\cot x} \right) \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = - {\left( {1 + {{\cot }^2}x} \right)^{ - 1/2}}\left( {{{\cot }^2}x{{\csc }^2}x} \right) \cr & \frac{{dy}}{{dx}} = - \frac{{{{\cot }^2}x{{\csc }^2}x}}{{\sqrt {1 + {{\cot }^2}x} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.