Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 595: 9

Answer

$$ y^{2}=x+1 \quad(\text { for } 0 \leq x \leq 3) $$ The exact area of the surface obtained by rotating the given curve about the x-axis is $$ S=\int 2 \pi y d s=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) $$

Work Step by Step

$$ y^{2}=x+1 \quad(\text { for } 0 \leq x \leq 3) $$ The curve $$ y^{2}=x+1 \Rightarrow y=\sqrt{x+1} \quad(\text { for } 0 \leq x \leq 3 \text { and } 1 \leq y \leq 2) $$ We have $$ y^{\prime}=1 /(2 \sqrt{x+1}) $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\{1 /(2 \sqrt{x+1})\}^{2}} dx \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the x-axis $$ \begin{aligned} S &=\int 2 \pi y d s\\ &=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x\\ &=2 \pi \int_{0}^{3} \sqrt{x+1} \sqrt{1+\frac{1}{4(x+1)}} d x\\ &=2 \pi \int_{0}^{3} \sqrt{x+1+\frac{1}{4}} d x \\ &=2 \pi \int_{0}^{3} \sqrt{x+\frac{5}{4}} d x\\ &=2 \pi \int_{5 / 4}^{17 / 4} \sqrt{u} d u \quad\left[\begin{array}{c} u=x+\frac{5}{4}, \\ d u=d x \end{array}\right] \\ &=2 \pi\left[\frac{2}{3} u^{3 / 2}\right]_{5 / 4}^{17 / 4}\\ &=2 \pi \cdot \frac{2}{3}\left(\frac{17^{3 / 2}}{8}-\frac{5^{3 / 2}}{8}\right)\\ &=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) \end{aligned} $$ The exact area of the surface obtained by rotating the given curve about the x-axis is $$ S=\int 2 \pi y d s=\int_{0}^{3} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.