Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 595: 1

Answer

(a) i)$ \int ^{\frac{\pi}{3}}_{0} 2\pi \tan x \sqrt{1+\sec^{4}x}dx$ ii) $ \int^{\frac{\pi}{3}}_{0}2\pi x \sqrt{1+\sec^{4} x} dx$ (b) i) 10.5017 ii) 7.9353

Work Step by Step

(a) i) $y = \tan x$ then $dy/dx = \sec^{2} x$ and $ds = \sqrt{1+(dy/dx)^{2}}dx = \sqrt{1+\sec^{4} x}dx$ $S = \int 2\pi y ds = \int ^{\frac{\pi}{3}}_{0} 2\pi \tan x \sqrt{1+\sec^{4}x}dx$ ii) $S = \int 2\pi x ds = \int^{\frac{\pi}{3}}_{0}2\pi x \sqrt{1+\sec^{4} x} dx$ (b) i) 10.5017 ii) 7.9353
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.